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NOMENCLATURE 

c 
k: 

specific heat of ground [kJ/kg “C] ; 
thermal conductivity of ground [kJ/b . m “C] ; 

‘G(t), solair temperature PC] ; 
4x, tX response function [h- ‘1; 
U(x,t), ground response to unit step function of TA(t) 

WI ; 
h, heat transfer coefIicient at the surface 

[kJ,‘h+m*“C]; 
m, number of harmonic ; 
a0, mean value of solair temperature [“Cl ; 
% amplitude of mth harmonic in TA(t) c”C]; 
t, time [h]; 
x, vertical distance below ground level [m] ; 
S, Laplace variable. 

Greek symbols 

PV density of the ground [kg/ma] ; 
w, 2n (period))’ [h-i]; 
a,, thermal diffusivity of ground [m*,h] ; 
onv phase factor of mth harmonic in 7’,ft): 
5, preceded time [h] ; 

8, a constant, * ; 
L 1 

a variable, (~/,/a~); 

a constant, 9. 

INTRODUCTlON 

PREDICTION of temperature distribution in ground subject to 
arbitrary variations of solar radiation and atmospheric 
temperature is a problem of practical importance in evaluat- 
ing the thermal flux into structures which are fully or partly 
underground. The existing analytical procedure[l, 21 for 
evaluating the temperature distribution in ground implies 
that the distribution is periodic in nature on account of the 
assumed periodicity of solair temperature which character- 
izes the combined effect of solar radiation and the atmos- 
pheric temperature. Such an approach is not applicable when 
the solair temperature is not periodic in nature; which often 
happens during cloudy days and other abruptly variable 
meteorological conditions. In fact, theoretically, the periodic 
solution assumes that the solair temperature is the same on all 
the preceding days and this is never true in actual practice. In 
this paper we apply the concept of response function[3,4] to 
investigate the temperature distribution in ground for any 
arbitrary time (t) dependence of solair temperature TA(t). 

THE RFSPONSE FUNCTION METHOD 

The essential element of response function method is the 
fact that theres~n~ofa~onstant parameter linear system to 

a dynamic input is given by the convolution integral as a 
weighted linear sum over the entire past history of the input, 
Thus, if the solair temperature variation at the ground surface 
(x = 0) is defined by an arbitrary function TA(t), then the 
temperature of the ground may be computed by the con- 
volution integral : 

T(x, t) = 
i 

r 
T,(t - t)h(x,r)ds (I) 

0 

where the h(x,r) is the ground response to a unit impulse 
input (or Dirac delta function) of T”(t), and hence is called the 
‘response function’. Further the ground response U(x, t) to a 
unit step function of solair temperature [T”(t) = 0 at t < 0; 
TA(t) = 1 at t >_ 0] is related to the response function as below 

h(x, t) = ; CJ(x, t). (2) 

Ground response to a unit stepfunction of T&(t) 
The ground response U(x,r) is characterized by the heat 

conductivity equation 
2 2 

$qx,r) = b, -$ U(x,t) = a& U(x,tf. (3) 

The energy balance at the ground surface as expressed in [2] 
is 

- kE(r,t) = h[ T,(t) - U(0, t)]. (4) 
.X=0 

Also, 

TA(t) = 0 for t < 0 

TA(t) = 1 for t 3 0 
unit step function. (5) 

Other boundary and initial conditions are as 

x + x ff(x, t) is Iii-rite, (6) 

and 

U(x, 0) = 0. (7) 

The function U(x, t) may be obtained by solving equation 
(3) under the boundary conditions (4))(7). This is accom- 
plished by taking the Laplace transform of equations (3)-(7). 
solving them we obtain: 

where 

ii&, s) = 
B ~ e _ 7 \’ ’ 

s(P + J) 
(8) 

p= hJG/k, and y = xi&. (9) 

Taking the inverse Laplace transform of (8) we get 
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U(x, t) = [erfc()yt - 1 ‘) 

- e’8+8”erfc(&yt-’ ’ + St’ ‘)I (10) 

From equations (2) and (10). the response function may be 
written as 

@r)=? 
[ 

e-%f~r-l 2 

Jr _ 
B21e*“+““erfc($yt-’ ’ + fit’ *) 

I 
; (II) 

obviously h(x, r) depends oniy on the thermophysical proper- 
ties of the ground and is independent of the nature of T’(t). 

The ground tem~rature is given by equation (1) with 
response function h(~, t) given by equation (11). 

Ground temperature for periodic T,(t) 
Let 

T,(f) = a, + i a,cos(mwt - (r,). (12) 
m=t 

Thus, from equations (1) and (12), 
I 

T(x, t) = 
Ti 

7 
a, + c (I,cos[mw(t - 5) - 4J 

., 0 m=, 1 

.k(.v,~).dr. (13) 

Using equations (11) and (13) and substituting b, = 
(mwt - c,). 6, = mm, czl = tan - ’ h,/fi* and evaluating the 
integral we get 

where 

w. f) = uo + c I,, 
Ill=, 

I,,, = A(/@;“) cos[b, - n/4 - (u j’h,; ,/2)] 

- A@/b;‘*)cos[b, + CL, - n/4 - (a&&/2)]cosa, 

+ Acosa, cos[h, + CL, - (u&&5)] (14) 

and 

A = u,e -I’\ ii,. \ ? 

On further simplification we get 

(1% 

T(u,t) = ug + c B, 
!?I=, 

x exp( - WI ’ 2 r.u)cos(mwr - 6, - /?I’ %.Y - pm) (16) 

where 

and 

& = tan-’ [(n1’~~~1);(1 + m”‘/1)]~ 

This expression is the same as that obtained by Khatry rt 
a/.[23 based on periodic analysis. It establishes the equival- 
ence of the two methods for a periodic input. 

The preceding sign&znr time in responsefunction method 
The integral in equation (1) may not always be expressible 

in a closed form, particularly when Ta(t) is not an analytical 
function of time. ln such cases one has to evaluate the integral 
by numerical computations, which in turn needs the replace- 
ment of the upper time limit infinity in the integral ofequation 
(1) by a finite time limit (r,) without affecting the accuracy of 
the results to a significant extent. The equivalence of the 
periodic and response function methods has been utilized to 
determine accuracy as a function of t, as follows. Fourier 
analysis data for daily variation of solair temperature and the 
other thermophysical data ofground in Kuwait as given in[2] 
were used to calculate the daily variation of ground tempera- 
ture at x = 0.0322m using the periodic analysis [equation 
(16)] as well as the response function method [equations (1) 
and (It )]. In the calculations by latter method the solair 
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FE. 1. Hourly variation of ground temperature with time at a depth x = 0.0322m when the day under 
consideration is preceded by days of identical solair temperatures. 
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FIG. 2. Hourly variation of ground temperature with time at a depth x = 0.0322m when the day under 
consideration is cloudy and is preceded by cloudy days of non-identical solair temperature. 

temperature was assumed to be same on all preceding days analysis for the case when the day under consideration as well 

and ), 1,2,3 and 4 days were respectively taken as the upper as the preceding days are cloudy days (having their solair 

limit (to) in the integral of equation (1). The results of the temperatures as given in Table 1). It is clearly seen that the 
calculations are shown in Fig. 1. It is seen that curve obtained curve for daily variation of ground temperature obtained by 
by the response function method converges to the one response function method does not systematically converge 
obtained by harmonic analysis as t, increases, and a good to the curve obtained by periodic analysis, thereby indicating 

convergence (deviation 5%) is obtained at t, = 4 days. the importance of response function technique for the 

Furthermore, in Fig. 2 we present the results of similar transient, pulsed, intermittent and abruptly varying inputs. 

Table 1 

Time 

(h) 

01 11.0 11.0 
02 12.0 12.0 
03 09.5 09.5 
04 12.5 12.5 
05 13.5 13.5 
06 19.0 19.0 
07 22.5 22.5 
08 25.5 25.5 
09 38.5 38.5 
10 43.0 43.0 
11 53.0 53.0 
12 54.0 54.0 
13 52.0 52.0 
14 47.0 47.0 
15 42.5 42.5 
16 38.2 38.2 
17 27.0 27.0 
18 20.5 20.5 
19 18.5 18.5 
20 17.0 17.0 
21 16.5 16.5 
22 15.5 15.5 
23 14.5 14.5 
24 13.2 13.2 

Day under 
consideration 
(cloudy day) 

Solair temperature (“C) 

first day 
Preceding days (cloudy days) 
second day third day 

15.0 16.0 
14.0 13.0 
13.0 10.5 
12.0 09.5 
12.5 10.0 
13.0 12.0 
15.0 15.0 
20.0 19.5 
26.5 23.0 
45.0 26.0 
36.5 27.5 
32.0 29.0 
46.5 28.5 
55.0 28.0 
45.0 27.0 
25.0 24.0 
27.0 21.0 
20.0 15.5 
15.0 13.0 
15.5 14.0 
16.0 15.0 
17.0 17.0 
16.0 19.0 
15.0 18.5 

fourth day 

15.0 
13.0 
12.5 
11.7 
12.3 
14.5 
19.0 
22.5 
17.5 
36.5 
42.0 
44.0 
36.0 
35.5 
39.0 
40.5 
23.0 
20.5 
17.0 
13.5 
15.5 
15.0 
14.7 
15.2 
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CONCLUSIONS 

In this paper the ground temperature T(x,t) due to 
arbitrary solair temperature is expressed in terms of response 
function and the convolution integral. Analytic solution of 
the integral is obtained for periodic variation of T,(r). The 
resulting expression for T(x,t) is found to be same as that 
obtained by periodic analysis by earlier authors. The equival- 
ence of two methods for a periodic input is used to determine 
the preceding significant time in response function method. 
Subsequently the results of response function analysis and the 
periodic analysis are compared for a cloudy day preceded by 
cloudy days. 
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Pr, 

Pr,, 

molecular Prandtl number = v/y; 

turbulent Prandtl number = (G aTjay)/ 

(r0 aujay); 
thermometric wall heat flux; 

correlation coefficient UD/(U’ “’ 1” ’ ‘) ; 
correlation coefficient u0/(c21’i0z1 ‘); 

local mean temperature; 
wall temperature; 
friction temperature Q,/tJ,; 

(T,- ‘IV,; 
mean velocities in X, y directions, respectively ; 
friction velocity = rj+ 2 ; 
ratio U/V,; 
velocity fluctuations in x. J, : directions, 
respectively; 

Greek symbols 

u/U,, c/IJ, and w/U,, respectively; 
Reynolds shear stress ; 
turbulent heat flux ; 
space co-ordinates in streamwise, normal and 
spanwise directions; 
non-dimensional normal co-ordinate yU,/v. 

NOMENCLATURE INTRODUCTlOh 

THE TREND of Pr, in the region 0 < yc < 40 and its possible 
dependence on Pr have not yet been established. Launder [l] 
suggested that the most sensible requirement is that any 
proposal of Pr, in this region should lead to adequate 
predictions of measured mean temperature profiles and 
surface heat flux. In this context, Cebeci’s [2] model indicates 
that, close to the wall, Pr, increases as the wall is approached 
and remains constant within the viscous sublayer. The 
constant, as determined by Na and Habib [3] is approx- 
imately 1.43. Wassel and Catton [4] use a similar model for 
their calculation method, except that the constant is about 

1.32, again for air. Sleicher [5] calculated Pr, from measured 
velocity and temperature profiles ofair in fully developed pipe 
flow and found that Pr, approached a constant of about 1.4 
very near the wall. This value is slightly higher than the value 
of Pr- ‘jz suggested, for example, by Sherwood et al. [6]. That 
Pr, is constant, for a given Pr, very near the wall is verified by 
analytical considerations of mean velocity, mean tempera- 
ture, Reynolds shear stress and mean heat-flux profiles in the 
region close to the wall. Considerations of this type have been 
given by Meroney [7] and Orlando et (11. [8]. Meroney did 
not attempt to estimate the constant, but Orlando et al. 
suggested an experimental procedure that yields a value of 
about 1.4 for this constant. Although the actual value of Pr, at 
the wall is not relevant to methods of calculating the heat 
transfer in a boundary layer, an accurate description of Pr, in 
the buffer zone (approximately 5 < JJ+ < 20) can serve as a 
useful input to calculation methods. In the present note, the 
analysis followed in [7] and [8] is used with a view to 
establish the trend of Pr, near the wall. This analysis is 
consistent with the Navier-Stokes and heat-transfer equa- 
tions and yields a distribution of Pr,, using available experim- 
ental mean velocity, temperature, momentum and heat flux 
profiles close to the wall. 

%/A, 

;. 

0:’ 
0+, 
TX., 
v, 

Subscript 

w, 

coefficients in equations (l))(4): 
thermal diffusivity; 
coefficients in equations (1 l)-( 13); 
temperature fluctuation; 
OF,; 
kinematic wall shear stress; 
kinematic viscosity. 

denotes wall value. 


